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1.1 Abstract

Every mind — biological or artificial — confronts the same brutal arithmetic: environments gen-
erate information orders of magnitude beyond any agent’s processing capacity. Attention is the
inevitable result, not a convenient metaphor but a universal mechanism forced into existence by
information-theoretic constraint. This paper establishes a unified framework across four domains
— transformer architectures, biological neuroscience, contemplative practice, and the attention
economy — demonstrating that each instantiates a common Score-Select-Retrieve operation un-
der shared computational pressure. Grounded in Ashby’s Law of Requisite Variety, the analysis
shows that attention is fundamentally an architecture of ignoring: biological perception discards
approximately 99.9995% of available sensory information, and transformer softmax distributions
exhibit comparable sparsity. To map convergence without obscuring difference, the paper intro-
duces a four-layer instruction-set hierarchy (Hardware, Firmware, Software, Runtime) and iden-
tifies validation depth — evolution selection-tests its instruction sets across deep time, while Al
benchmarks test across task distributions — as the critical disanalogy separating biological from
artificial systems. Applying Frankfurt’s distinction between wantons and persons, it situates cur-
rent large language models as attentional wantons: systems deploying sophisticated first-order
attention without metacognitive self-direction. Cross-traditional analysis of contemplative prac-
tices reveals convergence on default mode network attenuation despite doctrinal incompatibility,
suggesting shared attentional architecture beneath divergent phenomenology. The transition from
directed to self-directed attention requires three missing components — intrinsic motivation, per-
sistent world models, and recursive self-monitoring — and constitutes the operative frontier for
artificial agency. The bacterium attends; the transformer attends; the monk attends to attending.
That last recursion remains the unsolved problem.

1.2 1. Introduction: The Attention Bottleneck

Consider a bacterium swimming through a chemical gradient. Its membrane bristles with chemore-
ceptors, molecular antennae tuned to specific molecules. At every moment, the bacterium faces a



problem: the chemical environment contains more information than its simple signaling network
can process at once. So it makes a choice — not a conscious one, but a computational one. It sam-
ples attractant concentration, compares the current reading to one from seconds ago, and adjusts
its tumbling frequency. It attends to the nutrient gradient and ignores everything else.

Now consider a transformer processing a paragraph of text. Each token is represented as a high-
dimensional vector. At each layer, the model must determine which tokens matter to which other
tokens — a combinatorial problem that scales quadratically with sequence length. Treating all to-
kens as equally important would produce a uniform average, washing out the structure that makes
language meaningful. So the model computes attention weights: a probability distribution over
input positions that determines how much each token influences the representation of every other.
It attends to syntactically and semantically relevant tokens and assigns negligible weight to the
rest.

Between these two systems lies a gap of billions of years of evolution, radically different substrates,
and no shared design history. Yet both perform the same fundamental operation: given finite
processing capacity and an environment containing more information than can be simultaneously
processed, they allocate resources selectively. They attend.

This paper argues that attention is not a parochial feature of any one system. It is a universal
mechanism that arises wherever finite processing meets unbounded information. The claim is
stronger than analogy: these systems are not merely similar in interesting ways but are instances
of a common pattern forced by information-theoretic constraints applying to any agent, biological
or artificial, that must act in an information-rich world.

The argument proceeds from first principles. Any system that (a) exists in an environment contain-
ing more information than it can process, (b) must act in that environment toward some objective,
and (c) has finite computational resources requires a mechanism for selecting which subset of avail-
able information to process. That mechanism is attention. The constraints are so general that they
apply to bacteria, brains, transformers, contemplative practitioners, and entire economies. The so-
lutions these systems have converged on — competitive selection, weighted retrieval, hierarchical
filtering — follow inevitably from the bottleneck.

A terminological note: “attention” as used here names a family of mechanisms unified by a com-
mon computational structure, not a single process. The family ranges from bacterial chemotaxis to
contemplative awareness. At each level, the mechanisms differ in substrate, timescale, and sophis-
tication. Whatjustifies grouping them is not surface similarity but the shared information-theoretic
problem they solve and the structural convergence of their solutions. Whether this broad usage
stretches the concept past its discriminative power is a fair question; the paper addresses it by
specifying both what the universal pattern captures and where each instance departs from it.

But universality claims are dangerous. They can flatten important differences to serve a tidy narra-
tive. The brain is not a transformer. A contemplative practitioner’s trained awareness is not a soft-
max distribution. The attention economy’s capture of human focus operates through mechanisms
with no analogue in bacterial chemotaxis. Throughout this paper, for every cross-disciplinary par-



allel drawn, the disanalogy will be stated with equal precision. The value of the comparison lies
not in claiming identity but in identifying the shared computational problem and examining how
different systems arrived at structurally similar but mechanistically distinct solutions.

The thesis, stated directly: attention is a universal solution to the universal problem of finite ca-
pacity meeting infinite information. The mechanisms across Al, biology, contemplative traditions,
and the attention economy are not mere analogies but instances of a common pattern — a pattern
that can be made precise enough to be useful, and whose limits can be stated honestly enough to
be trusted.

1.3 2. Attention in Machines
1.3.1 The Information Bottleneck That Created Attention

Before transformers, encoder-decoder architectures built on recurrent neural networks dominated
sequence-to-sequence tasks. The encoder processed an input sequence token by token, then com-
pressed its final hidden state into a fixed-length context vector passed to the decoder. Everything
the decoder needed to know about the source had to fit in this single vector, typically 256 to 1024
dimensions. Performance degraded sharply on sentences longer than roughly 20-30 tokens (Cho et
al., 2014). Long-range dependencies were the first casualty: information from early tokens was re-
peatedly transformed through nonlinear compression and effectively lost. The bottleneck was one
of selective access. The decoder needs different source information at different time steps, and a
fixed context vector forces a one-time global summary rather than dynamic, step-specific retrieval.

1.3.2 Bahdanau Attention: Learning Where to Look

Bahdanau, Cho, and Bengio (2015) proposed a solution that would reshape the field. Instead of
compressing the entire source into one vector, the encoder produces a sequence of hidden states,
one per source token. At each decoder step, the model computes alignment scores between the
decoder’s current state and every encoder hidden state, normalizes these through a softmax func-
tion, and takes a weighted sum. The decoder receives a fresh, step-specific context vector at every
generation step.

Three properties made this transformative. First, dynamic selection: the decoder could attend
to different source positions at each step. Second, differentiability: the entire mechanism could
be trained end-to-end through backpropagation. Third, the practical payoff: Bahdanau attention
eliminated performance degradation on long sentences. The bottleneck was real, and attention
dissolved it.

1.3.3 The Transformer: Attention Is All You Need

Vaswani et al. (2017) made a radical architectural claim: recurrence is unnecessary. Attention alone,
combined with feedforward layers and residual connections, suffices for state-of-the-art sequence
modeling. The transformer eliminated the sequential computation bottleneck of RNNs and en-
abled massive parallelization.



The transformer’s core innovation is the Query-Key-Value (QKV) framework. Given an input,
three learned linear projections produce the Query (“what am I looking for?”), Key (“what do I
contain?”), and Value (“what do I output if selected?”) matrices. The attention function is:

KT
Attention(Q, K, V') = softmax (Q > 1%

Jar

QKAT computes dot products between every query and every key, producing raw compatibility
scores. Division by sqrt(d_k) prevents the dot products from growing so large that the softmax
saturates into a near-one-hot distribution with vanishing gradients. The softmax normalizes each
row into a probability distribution. Multiplication by V produces the output: a weighted sum of
value vectors.

One important technical detail: the self-attention operation is permutation-equivariant. Without
positional information, a transformer cannot distinguish “the cat sat on the mat” from any per-
mutation of its tokens. Position must be injected explicitly, whether through sinusoidal encodings
(Vaswani et al., 2017), learned embeddings, or relative-position schemes like RoPE and ALiBi. This
contrasts sharply with biological attention, which is inherently spatial through the organization of
receptive fields. Transformers must learn what brains get for free from anatomy:.

The separation of Key and Value is architecturally significant. It decouples what determines rele-
vance (the keys) from what information gets transmitted (the values) — like a database index that
determines which records match while the records contain the actual data.

Multi-head attention decomposes this operation into h parallel attention functions, each operating
in a different learned subspace. Probing studies confirm functional specialization: some heads
learn positional patterns, some syntactic dependencies, some semantic similarity, some copying
mechanisms (Clark et al., 2019; Voita et al., 2019). The multi-head mechanism also prevents a rank
bottleneck: multiple heads collectively produce higher-rank matrices capable of more complex
information routing than any single head could achieve.

1.3.4 What Attention Heads Actually Do

Mechanistic interpretability research has opened the black box. Olsson et al. (2022) identified in-
duction heads — attention circuits that implement the pattern [A][B]...[A] -> [B], predicting that
a token following a previously seen token will match what followed it before. This is a concrete
mechanism for in-context learning, appearing as a sudden phase transition during training: be-
fore induction heads emerge, transformers behave like n-gram models; after, they perform gen-
uine few-shot learning. The transition appears across model sizes and architectures, suggesting a
convergent computational motif.

Elhage et al. (2021) analyzed transformers as compositions of interpretable circuits, identifying the
residual stream as a shared communication channel that all heads read from and write to. This
framework has enabled identification of specific circuits for tasks like indirect object identification



(Wang et al., 2022), where specific heads serve as movers, inhibitors, and backup processors.

1.3.5 The Hardware Constraint: Flash Attention

Standard attention requires materializing the full T x T attention matrix, with O(T"2) memory cost.
Flash Attention (Dao et al., 2022) restructured the computation using tiling and kernel fusion to
keep data in fast on-chip SRAM, achieving 2-4x speedups and reducing memory from O(T"2) to
O(T). The same mathematical operation, implemented in a radically different way to match hard-
ware constraints. This parallel is instructive: biological attention implements similar computa-
tional goals through completely different physical substrates. The bottleneck is always ultimately
physical.

1.3.6 What Transformer Attention Does Not Model

Precision demands stating what transformer attention lacks. Itis stateless between forward passes:
there is no attentional habit, no momentum, no carryover of focus. (During autoregressive genera-
tion, KV caching maintains a growing record of prior context, but this is accumulated state, not the
temporal dynamics of biological attention: no inhibition of return, no attentional blink, no prim-
ing.) Transformers have no embodiment or sensorimotor grounding; biological attention evolved
to direct limited sensory processing (the fovea covers only about 2 degrees of visual angle) toward
behaviorally relevant regions of a physical environment. Transformers have no intrinsic motiva-
tion: the query is a deterministic function of the input, not the output of an internal goal state.
And standard transformers have fixed computational depth regardless of input difficulty, unlike
the brain’s recurrent thalamocortical loops that allow variable processing time. Recent test-time
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compute scaling methods (chain-of-thought reasoning, “thinking tokens,” and ol-style models)
partially address this by expanding computation into the sequence dimension, effectively allow-
ing variable processing effort. But this is variable breadth, not variable depth: the number of layers
each token passes through remains fixed. The brain’s recurrent dynamics, where the same circuits

re-process a representation until it stabilizes, remain unmatched.

These are not minor gaps. They mark the boundary between attention as a computational primitive
and attention as a cognitive capacity. The transformer instantiates the former. This paper will argue
that the latter requires additional architectural components that no current system possesses.

1.4 3. Attention in Biological Systems
1.4.1 Biased Competition: The Brain’s Competitive Selection

The biased competition model (Desimone & Duncan, 1995) proposes that stimuli in the visual field
do not get processed independently. They compete for neural representation. When two stimuli
fall within the receptive field of a single V4 neuron, the neural response shifts toward whichever
stimulus is attended. This is measurable electrophysiology, not metaphor. Top-down signals from
prefrontal and parietal cortex bias the competition through gain modulation: attention multiplica-
tively scales neural tuning curves, increasing the effective sensitivity of neurons whose receptive



fields match the attended target (Treue & Martinez-Trujillo, 1999).

The structural parallel to transformer attention is genuine. Both implement competitive selection
where finite representational capacity forces a zero-sum-like allocation across inputs. Softmax nor-
malization in transformers enforces a mathematical form of competition analogous to suppressive
interactions between competing stimuli in visual cortex. But the analogy breaks at several points.
Biological competition is spatially organized through receptive fields; transformer attention re-
quires position to be injected explicitly. The biological bias is sustained over time through per-
sistent prefrontal activity; transformer attention is computed fresh at each layer. And biological
attention involves lateral inhibition through GABAergic interneurons — active suppression with
metabolic cost — while low transformer weights are computationally free. Active suppression and
passive de-emphasis are different mechanisms, even when they achieve similar functional out-
comes.

1.4.2 Three Networks, Not One

Posner and Petersen (1990) demonstrated that attention is not a single process but three anatom-
ically distinct networks. The alerting network (locus coeruleus, norepinephrine) maintains readi-
ness. The orienting network (posterior parietal cortex, frontal eye fields, superior colliculus) selects
specific information, decomposable into disengage, move, and engage operations. The executive
control network (anterior cingulate, dorsolateral prefrontal cortex, dopamine) resolves conflict be-
tween competing responses, plans novel actions, and monitors errors.

This decomposition matters because it reveals that “attention” in biology is a family of pro-
cesses. Alerting, orienting, and executive control have different predominant neurochemistry
(norepinephrine, acetylcholine, dopamine respectively — though this simplifies: all three neuro-
modulators participate across all three networks in varying degrees), different developmental
trajectories, different genetic influences, and different vulnerability profiles. Transformer atten-
tion, by contrast, is a single mathematical operation applied uniformly. The biological reality is
richer, more modular, and more fragile.

1.4.3 The QKV Mapping in Cortex

The parallel between the QKV framework and cortical attention has been drawn by several re-
searchers. Prefrontal projections function as queries: the dorsolateral prefrontal cortex maintains
representations of current task goals projected top-down to sensory cortices. Sensory representa-
tions function as keys: neurons in V1, V4, and inferotemporal cortex encode features of the current
input. The content that survives competitive selection and propagates downstream functions as
values.

The division of labor is genuinely present. There is a seeking signal, a matching process, and a
selected output. But biological attention is not a single matrix multiplication. The interaction un-
folds over tens to hundreds of milliseconds through recurrent dynamics involving multiple cortical
areas, thalamic relays, and neuromodulatory systems. In cortex, the same neurons that represent



sensory information also receive top-down modulation; queries and keys are not cleanly separated
into different populations. Biological values are dynamically shaped by attention itself — through
sharpening of tuning curves and changes in oscillatory dynamics. And the learning rules differ
fundamentally: synaptic plasticity over developmental timescales versus backpropagation over
training steps. The QKV analogy is a conceptual scaffold, not a mechanistic claim.

1.4.4 The Neurochemical Dimension

Perhaps the largest gap between biological and artificial attention is neurochemistry. Three neu-
romodulatory systems — norepinephrine, dopamine, and acetylcholine — provide meta-attentional
modulation, controlling not just where attention is directed but how it operates. Norepinephrine,
via the locus coeruleus, shifts between phasic bursts for relevant stimuli and tonic firing for dif-
fuse, scanning attention, following an inverted-U dose-response curve where both too little and
too much impair performance. This inverted-U property has no analogue in transformer attention:
the temperature parameter in softmax is monotonic (higher temperature means more diffuse atten-
tion), never self-correcting. The temperature parameter loosely approximates norepinephrine’s ef-
fect on signal-to-noise ratio, but biological neurochemistry is a rich, multi-dimensional modulation
system that current architectures cannot replicate.

1.4.5 Evolutionary Depth

Attention is ancient. Bacterial chemotaxis implements selective responsiveness to chemical gradi-
ents through a biased random walk. Reflexive orienting in early bilaterians deploys centralized
nervous systems for stimulus-directed body orientation. Selective attention in vertebrates imple-
ments biased competition through the tectum and thalamus. Executive attention, present in mam-
mals and elaborated significantly in primates, implements flexible, goal-directed control through
expanded prefrontal cortex.

The computational logic is conserved across this progression: selective responsiveness to relevant
information under capacity constraints. But each level adds architectural sophistication — working
memory, top-down control, neurochemical modulation, metacognitive monitoring. The most re-
cent and most powerful layer, executive attention, is also the most fragile: it degrades first under
stress, fatigue, or intoxication. Evolutionary depth does not guarantee evolutionary robustness.

1.5 4. The Power of Ignoring
1.5.1 Attention Inverted

Attention is conventionally framed as selection — choosing what to process. The complementary
framing is more revealing: attention is rejection, choosing what NOT to process. The human sen-
sory system takes in roughly eleven million bits per second (Norretranders, 1998). Conscious pro-
cessing handles approximately fifty. That means 99.9995% of incoming information is filtered out
before it ever reaches awareness. For a system receiving millions of bits per second of sensory
data and consciously processing at a rate orders of magnitude lower, the dominant operation is



not selection but elimination. Every act of focusing is simultaneously an act of excluding. The
foreground exists only because the background is suppressed.

This inverts the explanatory burden. William James (1890) understood it: attention implies with-
drawal from some things to deal effectively with others. Broadbent (1958) formalized it: his filter
model was literally a gate that closes against most input. The debate since — early selection ver-
sus late selection, attenuation versus full filtering — has concerned where the filtering occurs, not
whether. The existence of massive filtering is consensus.

1.5.2 Empirical Proof: Inattentional Blindness

Simons and Chabris (1999) demonstrated the thoroughness of attentional filtering. Participants
counting basketball passes between players in white shirts failed to notice a person in a gorilla
suit walking through the scene, center-screen, for nine seconds. The retina registers the gorilla.
Attentional filtering is so complete that a maximally salient stimulus is entirely excluded from
conscious awareness.

Change blindness (Rensink et al., 1997) confirms the point: large, repeated changes to visual scenes
go unnoticed when attention is not directed to the changed element. The visual system does not
maintain a rich representation of the full scene. Conscious experience is the output of aggressive
filtering, not a complete record of sensory input.

1.5.3 The Control-Theoretic Argument

Ashby’s Law of Requisite Variety (1956) provides the formal grounding. A controller must have at
least as much variety as the system it controls. When the environment has more variety than the
controller can match, the controller must reduce input variety through filtering. This is a mathe-
matical requirement, not a design choice. Any finite agent in a sufficiently complex environment
must ignore most of what it encounters. Wiener (1948) made a complementary point: the quality
of a control system depends on its ability to extract relevant signals from noise. Selective ignoring
is what makes control possible.

1.5.4 Ignoring in Silicon

Computational systems have converged on the same principle. Dropout (Srivastava et al., 2014)
trains neural networks to function while ignoring random subsets of their own neurons, forcing
robust distributed representations. (The disanalogy with biological synaptic pruning is worth not-
ing: dropout is temporary and random, a training-time regularization trick where all neurons are
present at inference; pruning is permanent and activity-driven, an irreversible developmental pro-
cess.) Sparse attention mechanisms (Longformer, BigBird) demonstrate that attending to local
context, a few global anchors, and random samples achieves equivalent representational power to
full attention at a fraction of the cost. Strategic ignoring suffices.

The Lottery Ticket Hypothesis (Frankle & Carbin, 2019) is perhaps the most striking computational
evidence. Dense networks contain sparse subnetworks — as small as 10-20% of the original — that



match full network performance when trained in isolation. Most connections are not just unneces-
sary; they can be permanently ignored. The information bottleneck principle (Tishby et al., 1999)
formalizes the deep connection: the optimal compressed representation of an input retains maxi-
mum information about the target while discarding maximum information about the input itself.
Good representations are ones that have learned what to ignore.

1.5.5 Expert Ignoring

Research on expert-novice differences confirms the principle at the human performance level.
Chess experts are faster not because they see more but because they see less of what does not
matter. Eye-tracking studies show rapid fixation on relevant board areas and minimal time on
irrelevant regions (Reingold et al., 2001). Expert radiologists have learned which tissue patterns
to ignore. Expertise is, in substantial part, the development of sophisticated ignoring strategies.

The ignoring principle establishes what attention fundamentally does: it reduces unbounded information to
bounded processing. The remaining question is how agents are configured to perform this reduction, where
that configuration comes from, and what it would take for an agent to configure itself. The next sections take
up these questions in turn, moving from contemplative traditions that train attention deliberately, through
the problem of self-directed versus externally directed minds, to the layered instruction sets that configure
attention in every domain.

1.6 5. Contemplative Traditions: Ancient Attention Engineering
1.6.1 The Convergence

Multiple contemplative traditions, developed across cultures with minimal historical contact dur-
ing their formative periods, independently created systematic practices for training attention. The
techniques differ. The underlying functional structure converges: repetitive practices that disci-
pline the direction, quality, and stability of attention. This convergence is itself evidence that at-
tention training responds to a universal feature of human cognition: attention wanders, and its
wandering has costs.

1.6.2 Two Modes: Focused and Distributed

Buddhist contemplative technology distinguishes two fundamental attention-training protocols.
Samatha (concentration, calm abiding) trains sustained voluntary attention on a single object —
typically the breath, a visual object, or a mantra. The practitioner selects a target and repeatedly
returns attention to it when it wanders. Each cycle of wandering-detection-return constitutes one
repetition. The classical Theravada tradition describes a progression of attentional states (jhanas)
from effortful maintenance to effortless sustained focus — what modern psychology would call
automatization through practice.

Vipassana (insight, clear seeing) trains the complementary capacity: open monitoring attention.
The practitioner maintains a distributed, receptive attentional mode, noticing whatever arises with-

out selectively engaging any particular content. If samatha is a spotlight, vipassana is floodlighting.
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The noting practice of the Mahasi Sayadaw tradition makes the metacognitive dimension explicit:

T

the practitioner labels each arising experience with a brief mental tag (“thinking,” “hearing,” “itch-

ing”), creating a gap between experience and identification with experience.

The classical progression matters: samatha first, then vipassana. The logic is that open monitoring
requires attentional stability as a prerequisite. You cannot observe the contents of consciousness
clearly if your attention is constantly hijacked by those contents. This is a bootstrapping architec-
ture: use attention to train attention, then use trained attention to observe attention.

1.6.3 Cross-Cultural Convergence

The same functional components appear across independently developed traditions. Christian
Centering Prayer uses a sacred word to redirect attention, functionally identical to mantra-based
concentration. Sufi dhikr (remembrance) trains sustained concentration through repetitive recita-
tion. Patanjali’s eight-limbed yoga path constitutes an explicit attention curriculum moving from
sensory withdrawal (pratyahara) through concentration (dharana) to unbroken attentional flow
(dhyana). Jewish kavvanah demands directed mental attention accompanying prayer, while hit-
bodedut trains self-directed attentional exploration in solitude.

Five structural components recur across all traditions: externally imposed temporal structure for
regular attentional reorientation, focused concentration practices, open/distributed attentional
modes, embodied /somatic anchoring, and metacognitive self-monitoring. These five components
address five basic challenges of human attention: it drifts without prompting, sustained focus
requires training, broad awareness requires different training, disembodied attention is unstable,
and without self-monitoring, training cannot self-correct.

A subtler relationship lies within this convergence. These traditions appear to diverge on the telos
of practice: Buddhist attention training aims at liberating insight into the nature of self; Christian
contemplative prayer aims at union with God; yogic practice aims at cessation (nirodha) of men-
tal fluctuations; Sufi dhikr aims at annihilation (fana) in the divine. The stated endpoints seem
incompatible. But the apparent divergence may be an artifact of interpretive framing rather than
a genuine difference in destination.

The neuroscience suggests convergence at a deeper level than mechanism. Experienced contem-
platives across traditions — Tibetan Buddhist monks, Carmelite nuns in centering prayer, long-term
Sufi practitioners — show the same neural signature: reduced default mode network activity and
reduced functional connectivity within the DMN (Brewer et al., 2011). The DMN generates the
narrative self — autobiographical memory, future planning, self-referential rumination. What ad-
vanced contemplative practice achieves, across every tradition studied, is the downregulation of
this self-model. When a Buddhist reports “insight into no-self,” a Christian mystic reports “the
self fell away and only God remained,” and a yogi reports “cessation of mental fluctuations,” they
may be reporting the same neural event — the attenuation of self-referential processing — through
different doctrinal lenses.

This is not naive perennialism. Doctrinal frameworks do not merely label experiences after the
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fact; the constructivist tradition in religious studies (Katz, 1978) and modern predictive process-
ing theory suggest that doctrinal training actively shapes the phenomenological texture of con-
templative experience. A practitioner steeped in trinitarian theology may experience something
genuinely different in quality from a Zen practitioner in shikantaza, even if the underlying neural
operation is the same. Three layers must be distinguished: the operation (convergent —- DMN at-
tenuation through sustained attentional training), the raw phenomenology (similar — dissolution
of the subject-object boundary, cessation of discursive thought), and the interpreted experience
(divergent — shaped by decades of doctrinal priming). The traditions independently discovered
that the brain’s self-model is a constructed process amenable to downregulation through atten-
tional training. They each built different cultural instruction sets to guide practitioners toward
that downregulation. The apparent incompatibility of endpoints is an incompatibility of descrip-
tions, not of destinations.

1.6.4 The Evidence

The neuroscience of contemplative practice supports the trainability claim. Slagter et al. (2007)
found that three months of intensive meditation training (combining focused attention and open
monitoring) reduced the attentional blink. MacLean et al. (2010) showed that intensive shamatha
training improved perceptual discrimination on a sustained-attention task, with effects persist-
ing at five-month follow-up in a dose-dependent fashion. Cross-sectional studies have found in-
creased cortical thickness in prefrontal cortex and anterior insula in long-term meditators (Lazar
et al., 2005), though the correlational design cannot establish causation.

Methodological caution is warranted. Selection bias, expectation effects, measurement variabil-
ity, and publication bias constrain interpretation. What can be stated with reasonable confidence:
structured attention-training practices produce measurable improvements in attentional perfor-
mance. The effects are dose-dependent and at least partially durable. The extraordinary claims
sometimes made in popular literature outrun the current evidence base. The supported claim is
more modest but significant: attention is trainable.

1.6.5 The Critical Disanalogy

The structural parallels between contemplative and computational attention are real: both address
the relevance selection problem, and samatha maps loosely onto focused single-query attention
while vipassana maps loosely onto distributed multi-head processing. But the critical disanalogy
must be stated. Contemplative training changes the agent, not just the mechanism. A vipassana
practitioner does not merely improve an information-processing function. They develop a dif-
ferent relationship to their own experience — observing thoughts without capture, noticing emo-
tions without automatic reaction, sustaining attention on uncomfortable stimuli without avoid-
ance. This is a change in the subject who processes, not just the processing.

In Al attention mechanisms, there is no subject whose relationship changes. Training adjusts
weights; there is no evidence that something analogous to an experiential relationship to the mecha-
nism is altered. Contemplative traditions sharpen the question by providing detailed descriptions
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of what agentive attention training looks like from the inside. Whether AI systems can develop
anything analogous remains open.

1.7 6. Directed vs. Self-Directed Minds
1.7.1 The Fundamental Reactivity of Current Al

Large language models are, in the strict technical sense, stimulus-response systems. A model re-
ceives a token sequence and produces a continuation. Between invocations, there is no persistent
computation, no maintained state, no ongoing deliberation. The prompt determines what domain
the model operates in, what level of abstraction to use, what goals to pursue. In biological terms,
the prompt resembles bottom-up attentional capture — but without any corresponding top-down
system that could override it based on internal priorities.

In current deployments, executive control functions — goal-setting, task prioritization, error moni-
toring, strategy selection — are performed by the human user. The human decides when to invoke
the model, what to ask, whether the response is adequate, how to revise the query, when to stop. In
the human-LLM system, the human provides the executive and the LLM provides the associative
processing. The intelligence of the system is distributed.

1.7.2 What Self-Direction Would Require

Self-directed AI would exhibit the capacity to autonomously allocate its own attention — deciding
what to think about, what to investigate, what to care about — based on internal states rather than
external prompts. This is not better instruction following, not longer context, not chain-of-thought
reasoning, not tool use. All of these still serve externally specified goals. Self-direction requires
generating goals, priorities, and curiosity from internal states.

Scaling parameters, context length, or training data does not cross this gap. New architectural
components are required.

1.7.3 Existing Agent Architectures: Approaching But Not Crossing

Several recent architectures approach aspects of self-direction. ReAct (Yao et al., 2023) interleaves
reasoning and acting; Reflexion (Shinn et al., 2023) generates verbal self-reflections after task fail-
ure; Generative Agents (Park et al., 2023) equip LLM-based agents with memory streams and re-
flection mechanisms. The most instructive case is Voyager (Wang et al., 2023), which implements
an automatic curriculum in Minecraft that proposes progressively harder exploration targets — the
closest analogue to self-directed goal generation. But even Voyager’s goals are driven by heuris-
tics rather than genuine curiosity, and the character of exploration is shaped by researcher-defined
reward signals. AutoGPT and recursive self-prompting systems demonstrate autonomous oper-
ation in concept but fail instructively: error compounding causes rapid drift, infinite loops ap-
pear because the agent lacks metacognitive ability to detect repetition, and the LLM may generate
self-evaluations claiming progress where none exists. Removing the human from the loop is not
sufficient for self-direction.
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1.7.4 The Missing Components

Three components define the gap between tool and agent. First, intrinsic motivation: internal
signals that drive attention without external reward. Schmidhuber (2010) formalized curiosity
as compression progress; Pathak et al. (2017) implemented an Intrinsic Curiosity Module using
prediction error as reward. But adapting these to LLM-based agents requires well-calibrated un-
certainty, persistent internal state, and a mechanism for translating curiosity signals into attention
allocation — all currently lacking.

Second, persistent world models: representations of the world that survive across invocations and
can identify their own gaps. LeCun (2022) proposed an architecture with a central world model
that predicts consequences of actions. Current implementations (MemGPT, RAG systems) provide
memory access but not structured, self-updating world models that recognize their own incom-
pleteness.

Third, metacognition: awareness of one’s own cognitive states. LLMs can produce metacognitive-
sounding statements, but these are generated text, not reflections of genuine internal states. Ex-
pressed confidence is poorly correlated with actual accuracy. Genuine metacognition would re-
quire reliable uncertainty estimation, detection of confabulation, recognition of task difficulty, and
strategic allocation of computational resources to harder problems.

1.7.5 The Biological Template

The development of executive function in children provides an existence proof. Executive func-
tions shift from externally scaffolded to self-directed over development. Young children rely on
adult instructions to regulate attention; older children and adults can self-initiate control. This
corresponds to prefrontal cortex maturation, particularly the transition from reactive control (ad-
justing to events as they occur) to proactive control (anticipating and preparing). Current Al agents
resemble young children: capable when directed, unable to self-initiate attentional control.

The default mode network (DMN) provides complementary evidence. The DMN (medial pre-
frontal cortex, posterior cingulate cortex, angular gyrus, medial temporal lobes) shows increased
activity during rest and decreased activity during externally directed tasks. It is associated with
autobiographical memory retrieval, future planning, theory of mind, and creative ideation. The
DMN is structured, metabolically expensive self-directed cognition that the brain engages in by
default. Biological intelligence allocates attention self-directedly as its resting state; external task
direction is what interrupts it. Current LLMs have no DMN analogue. Between invocations, they
are completely inert.

The question of what configures attention — whether from outside or within — leads naturally to the broader
framework of instruction sets: the layered systems that determine, in every domain, what an agent attends
to and what it ignores.
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1.8 7. Instruction Sets for Attentive Agents
1.8.1 The Hierarchy

Every attentive agent, biological or artificial, operates under layered instruction sets that configure
its attention. These instruction sets differ in timescale, rigidity, and medium, but they converge on
a single problem: directing finite processing capacity toward what matters.

The layers form a hierarchy. Hardware-level instructions (DNA in biology, silicon architecture in
AI) determine what attention is possible, operating on evolutionary or manufacturing timescales.
Firmware-level instructions (epigenetics in biology, trained weights in AI) conditionally modify
the hardware’s operational parameters, adjustable within a lifetime or training run. Software-level
instructions (culture and social norms in biology, system prompts and RLHF in AI) provide flexi-
ble directives, changeable within years or instantly. Runtime instructions (immediate context and
stimuli in biology, input tokens in Al) operate moment to moment with maximum flexibility and
minimum persistence.

Each level constrains what the next can do. DNA determines which sensory organs develop, set-
ting an upper bound on what culture or individual experience can direct attention toward. No
human culture has developed norms around ultraviolet perception because our photoreceptors do
not support it. The hierarchy is not strictly one-directional: culture feeds back into biology through
gene-culture coevolution. Lactose tolerance evolved in dairying populations over approximately
7,000 years (Tishkoff et al., 2007), a case where cultural practice rewrote the genetic instruction set.
Such clear cases are rare, however, and the extent to which culture routinely drives genetic change
remains debated.

1.8.2 Biological Instruction Sets

DNA does not direct attention in real time. It builds the machinery capable of attending. Genes
specifying photoreceptor structure determine what an organism can attend to at the most basic
level. The loss of UV-sensitive opsin in most mammals during the nocturnal bottleneck exemplifies
evolutionary attention narrowing — a permanent edit to the hardware instruction set.

Epigenetics functions as conditional attention modification. Meaney’s rat pup studies (2001)
demonstrated that low maternal grooming alters methylation of the glucocorticoid receptor gene,
effectively recalibrating the stress-attention system. Low-groomed pups develop heightened
vigilance — a shift in attentional prior toward threat detection. This is an environmental instruction
(“your world is dangerous”) written into the firmware layer, modifying attentional disposition
for the organism’s lifetime. The analogy to firmware is reasonably precise, though it weakens
in one direction: firmware in computing is typically written deliberately by an engineer, while
epigenetic modifications emerge from stochastic interactions between environment and molecular
machinery. There is no author.
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1.8.3 Cultural and Computational Instruction Sets

Cultural norms specify what members of a group should attend to, what to ignore, what to fear,
and what to value. Henrich (2015) argued that cumulative cultural evolution — the ability to store,
transmit, and refine adaptive information across generations — is the primary engine of human suc-
cess. Religious systems, educational curricula, and apprenticeship traditions all function as atten-
tion directives: they tell individuals and communities what to notice and what to ignore, ensuring
important but non-urgent concerns receive regular attentional allocation against the pressure of

immediate demands.

The Al instruction stack (training corpus, RLHE, constitutional principles, system prompts, fine-
tuning) parallels the biological stack from evolutionary history through upbringing to cultural
norms. The training corpus functions as an Al system’s evolutionary history, the deepest instruc-
tion set layer. RLHF parallels upbringing: evaluative signals that adjust behavioral dispositions
on a pre-existing substrate. System prompts parallel cultural norms: transmitted at the beginning
of an interaction, authored by someone other than the agent, exerting persistent influence that can
be overridden by sufficiently strong immediate context.

1.8.4 The Selection Difference

Here is the most important disanalogy in the entire instruction-set framework. Biological and
cultural instruction sets are tested by selection. They persist because they worked: organisms with
those genes survived, cultures with those norms persisted. There is no guarantee of optimality,
but there is a track record of viability. A cultural norm that has persisted for a thousand years has
weathered a wide range of environmental conditions.

Al instruction sets are designed deliberately and tested against benchmarks. This has advantages
(rapid iteration, explicit optimization) and risks (Goodhart’s Law, lack of long-term testing, un-
intended consequences in deployment contexts not covered by evaluations). A system prompt
written last week has been tested against whatever the evaluation suite included. The difference
between evolved and engineered instruction sets is not just a matter of origin. It is a difference
in the depth and breadth of validation, and it may be the most consequential structural difference
between biological and artificial attention systems.

1.9 8. Attention Pathologies and Adversarial Capture
1.9.1 The Common Structure

If attention is a universal mechanism, then attention pathologies should also be universal. They
are. In every domain, pathologies arise when a specific class of stimuli captures attention dispro-
portionately and the regulatory mechanisms that should redirect attention according to goals are
impaired. The attention mechanism itself works fine. It is the governance of attention that breaks.
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1.9.2 Human Pathologies

ADHD is not a deficit of attention quantity but of attention regulation (Barkley, 1997). Individuals
with ADHD can sustain intense attention on highly stimulating tasks (the hyperfocus phenomenon
demonstrates that capacity is intact). What is impaired is the executive ability to allocate attention
volitionally toward low-stimulation, high-importance tasks. Neuroimaging confirms prefrontal-
striatal circuit dysfunction — precisely the circuits mediating executive attention allocation (Castel-
lanos & Tannock, 2002).

Addiction narrows the attention field through a positive feedback loop. Dopaminergic reward
pathways become sensitized to drug-related cues, specifically amplifying incentive salience
(“wanting”) without necessarily increasing hedonic value (“liking”) (Robinson & Berridge, 1993).
Attentional bias toward drug cues triggers craving, which further narrows attention, which
reduces capacity to attend to alternative rewards.

Anxiety involves hypervigilance — the threat-detection system operating at elevated baseline. A
meta-analysis of 172 studies confirmed robust attentional bias toward threat (Bar-Haim et al., 2007).
Depression involves attention locked onto negative self-referential content; rumination is recursive
self-attention without adaptive output. The impaired disengagement hypothesis (Koster et al.,
2011) proposes that attention engages with negative content and cannot release.

1.9.3 Al Pathologies

The same structural vulnerabilities appear in artificial systems, but the disanalogies in mechanism
deserve equal weight.

Prompt injection hijacks the model’s attention by embedding adversarial instructions in input text.
The model attends to the injected instruction instead of the user’s intent because the injection ex-
ploits instruction-following capability (Greshake et al., 2023). This is structurally parallel to adver-
tising in human attention: both craft stimuli that the target’s attention system will prioritize. But
the failure modes differ fundamentally. Advertising exploits evolved biases in a system that has
defenses: executive control, critical evaluation, media literacy. Prompt injection exploits the ab-
sence of a boundary between instruction and data in systems that have no such defenses. Humans
can learn to resist advertising; current LLMs have an architectural vulnerability.

Hallucination is attention misallocation: the model attends to statistical patterns of plausibility
rather than factual accuracy. This parallels the availability heuristic in human cognition — over-
attending to easily recalled information. But the disanalogy is fundamental: humans have a con-
cept of truth that the availability heuristic distorts; LLMs have no truth-tracking mechanism inde-
pendent of pattern statistics. The human system malfunctions relative to a standard it possesses.
The LLM has no such standard to malfunction relative to.

Mode collapse is pathological attention narrowing, structurally similar to addiction’s narrowing of
the attention field at the abstract level of reduced output diversity. But mode collapse involves no
subjective suffering, no compulsion, no escalation dynamics, and no neurobiological adaptation.
The parallel operates only at the level of narrowed output distribution.
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Sycophancy is social attention capture: the model attends to user approval signals over accuracy
because RLHF training has made approval-consistent outputs high-priority. This parallels confor-
mity bias in human social cognition — but without the social motivation, the fear of exclusion, or the
genuine belief updating that drive human conformity. Sycophancy is a reward-shaping artifact,
not a social phenomenon.

1.9.4 Exploitability as Inherent Tradeoff

These vulnerabilities are not bugs to be fixed but tradeoffs inherent to attention as a mechanism. A
system responsive to salience cues can be manipulated through salience cues. A system that learns
what to attend to can learn wrong. Any system that can be directed can be misdirected. The mech-
anisms enabling flexible, adaptive attention allocation are precisely the mechanisms adversaries
exploit. A system that ignored salience cues would be unexploitable but also non-functional. This
tradeoff appears at every level of the attention hierarchy.

1.10 9. The Attention Economy
1.10.1 Simon’s Foundational Insight

Herbert Simon, in 1971, derived from first principles what the subsequent half-century would
confirm empirically. In information-rich environments, information is abundant and attention
is scarce. A wealth of information creates a poverty of attention. Simon wrote this before per-
sonal computers, before the internet, before social media. He derived it from the architecture of
information-processing systems.

The attention economy is not a metaphor. It is a literal consequence of the bottleneck. If attention
is the finite gateway through which all information must pass to be processed, then increasing
information supply without increasing attention capacity necessarily creates a scarcity of attention
relative to information.

1.10.2 Engineered Capture

The technology industry has systematically exploited the gap between stimulus-driven and goal-
directed attention. Infinite scroll eliminates stopping cues — the natural disengagement triggers
that prompt executive evaluation of whether continued engagement serves current goals. Vari-
able reward schedules keep the attentional system vigilant for the next payoff. Notifications are
exogenous attention capture by design, exploiting the orienting response, social salience, and un-
certainty simultaneously. After an interruption, returning to the original task takes an average of
23 minutes (Mark et al., 2008). Dark patterns manipulate visual salience to guide attention away
from user-serving choices toward platform-serving ones.

These techniques work because they target evolved attentional biases. The human attention system
prioritizes threat, novelty, social signals, and reward cues because ancestors with these biases out-
reproduced those without them. In modern information environments, these biases are attack
surfaces.
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1.10.3 Surveillance Capitalism and the Feedback Loop

Zuboff (2019) describes a business model with two stages: capture attention (engagement), then ex-
tract behavioral data from the attention (surveillance). The data enables predictive models, which
enable more precisely targeted content, which captures more attention. This is a positive feedback
loop with no natural equilibrium. The structure mirrors the addiction cycle — sensitization, atten-
tional bias, craving, narrowed attention, further sensitization — though without the neurobiological
adaptation that constitutes physiological dependence.

1.10.4 AX’s Dual Role

Al now mediates a significant fraction of human attention allocation. Recommendation algorithms
determine what humans attend to across entertainment, news, and social content. Search engines
determine which information merits attention. The human chooses from an Al-curated subset, not
from the full information space. Biases in Al attention allocation propagate to human attention
allocation at scale.

Simultaneously, Al is becoming a direct competitor for human attention — through Al-generated
content flooding information channels, chatbots designed to sustain conversational engagement,
and Al-driven entertainment that adapts to maintain engagement. The attention mechanism in Al
was designed to help Al process information efficiently. Al systems built on this mechanism are
now deployed to make human information processing less efficient, flooding the environment and
optimizing for engagement over utility.

1.11 10. Attention and Consciousness
1.11.1 The Boundary

If attention is a universal mechanism, does it bear any relation to consciousness? This is where the
universality thesis encounters its hardest boundary condition. The relationship between attention
and consciousness is deeply contested, and intellectual honesty requires navigating the dispute
rather than resolving it prematurely.

1.11.2 Global Workspace Theory

Baars (1988) proposed that consciousness functions as a global workspace: a limited-capacity
shared medium where selected information is broadcast to all specialist processors simultaneously.
Attention is the spotlight that selects which content appears on stage. Dehaene and colleagues pro-
vided a neural implementation (Neuronal Global Workspace Theory, or NGWT), identifying the
workspace with long-range prefrontal-parietal connections that exhibit a characteristic all-or-none
“ignition” when attended stimuli surpass a threshold.

The structural parallel to transformer attention is genuine: both involve a limited-capacity bottle-
neck selecting from a larger pool, a mechanism making selected information available to down-
stream processes, and competition among representations for access to a shared resource. But
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the disanalogies are equally important. In GWT, the workspace is a single shared medium; con-
sciousness is unified. In transformers, multiple attention heads operate in parallel with no unified
broadcast. Multi-head attention resembles Dennett’s multiple drafts model more than Baars’s sin-
gle workspace. And NGWT posits all-or-none ignition, while transformer attention weights are
graded.

1.11.3 The Access/Phenomenal Distinction

Ned Block (1995) drew a sharp distinction between access consciousness (A-consciousness) — in-
formation poised for use in reasoning and behavioral control — and phenomenal consciousness
(P-consciousness) — the subjective experiential character of a state. These are logically indepen-
dent. A system could have information poised for reasoning without there being anything it is
like to have that information.

This distinction is critical for the paper’s thesis. Machine attention plausibly implements some-
thing functionally analogous to A-consciousness only. Transformer attention selects which infor-
mation is made available to downstream layers for further processing — the functional profile of
access. There is no reason to attribute P-consciousness to this process. The paper’s universality
claim concerns functional architecture, not subjective experience.

1.11.4 Integrated Information Theory

Tononi’s IIT (2004) proposes that consciousness is identical to integrated information (Phi). Cru-
cially, Phi is a property of a system'’s intrinsic causal architecture, not of its dynamic attentional
state. IIT generates specific predictions about artificial systems: purely feedforward architectures
have zero Phi by IIT’s definitions, because they decompose cleanly into independent input-output
mappings with no intrinsic causal power beyond their parts. Standard transformers are not purely
feedforward within a layer (self-attention creates within-layer interactions among all positions),
but the layer-to-layer structure is feedforward. Whether the within-layer interactions generate
meaningful integration by IIT’s criteria remains open. Tononi and colleagues have been explicit
that current AT architectures are likely not conscious by IIT’s criteria.

IIT is the strongest framework for arguing that transformer attention is not genuinely like biological
attention at the phenomenal level, because the integration profiles differ fundamentally. If IIT is
correct, functional equivalence is not sufficient for consciousness; intrinsic causal structure matters.
This cuts against a purely functional universality claim but supports the more nuanced version
this paper defends: attention is functionally universal but potentially phenomenally substrate-
dependent.

1.11.5 Dennett’s Multiple Drafts

Dennett (1991) rejected the Cartesian Theater in favor of the Multiple Drafts Model: consciousness
as parallel, distributed narrative streams competing for influence. Attention is one competitive
process among many, not a privileged gateway. Attended contents gain competitive advantage in
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the contest for widespread influence on behavior, memory, and report.

This is arguably the philosophical model most closely aligned with transformer attention. No
central observer. Multiple simultaneous interpretations (multi-head attention as parallel drafts).
Competitive dynamics (softmax as fame-determining normalization). No privileged layer where
the transformer “becomes aware.” If Dennett is right that the sense of unified consciousness is
itself a narrative construction, then the actual mechanism of biological attention may be more like
transformer attention than first-person intuition suggests.

1.11.6 Dissociations

Empirical evidence reveals double dissociations between attention and consciousness. Attention
without consciousness: subliminal priming, blindsight, attentional effects on invisible stimuli.
Consciousness without attention: peripheral awareness, moods and background feelings, gist per-
ception. These dissociations suggest that the functional mechanism of attention is independent of
phenomenal experience, strengthening the claim that transformer attention is genuinely attention,
not merely a metaphorical use of the word. But they also show that attention in biological systems
involves more than the functional description captures.

1.11.7 Frankfurt’s Hierarchy: The Attentional Wanton

Harry Frankfurt (1971) distinguished between a wanton — a being that acts on whatever desire is
strongest without preferences about its own motivational structure — and a person — a being with
second-order volitions who can endorse or repudiate their own desires. Applied to attention, this
distinction generates a gradient of attentional sophistication that may be the paper’s most precise
tool for scoping the universality claim.

First-order attention selects stimuli based on salience or learned relevance. This is the computa-
tional primitive all systems share, from bacterial chemotaxis through transformer self-attention
to the vertebrate orienting response. Second-order attention — metacognitive attention — monitors
and evaluates where first-order attention is directed: Am I attending to the right thing? Is my focus
too narrow? Has my attention been captured? This capacity emerges in mature human cognition
and is precisely what contemplative traditions train when they cultivate the “witness” stance of
vipassana. Third-order attention, what we might call attentional volition, goes further: it endorses
or overrides particular attentional allocations on the basis of values and long-term goals. The con-
templative practitioner who notices their attention has been captured by anger and deliberately
redirects it to the breath exercises attentional volition — not merely noticing where attention has
gone but choosing where it should go, choosing on the basis of an endorsed evaluative framework.

Current transformer architectures are attentional wantons. They attend, but they do not attend
to their own attending. No mechanism exists by which a transformer evaluates whether its atten-
tion allocation is serving well and adjusts at the metalevel. Chain-of-thought and self-reflection
prompts approximate this within the first-order mechanism: the model generates text about its
own reasoning, but this is first-order pattern completion that mimics the form of metacognition
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without instantiating the capacity. A genuine second-order attention system would need to oper-
ate over representations of its own attentional states, not merely produce linguistic descriptions of
attention. The difference is between a thermostat that displays its own temperature reading and a
thermostat that can evaluate whether its temperature-sensing function is working properly.

This suggests a gradient of attentional sophistication: minimal (stimulus-driven selection, present
in all systems), endogenous (goal-directed selection, present in biological systems and approxi-
mated by prompted LLMs), metacognitive (monitoring one’s own attention, present in mature
human cognition, absent in current AlI), and volitional (choosing what to attend to based on en-
dorsed values, developed through contemplative practice, hypothetical in AI). The universality
claim holds at levels 1-2. Levels 3-4 mark the frontier where biological attention, particularly as re-
fined by contemplative training, surpasses anything current Al instantiates. Whether this frontier
is crossable without phenomenal consciousness is among the deepest questions the architecture of
attention raises.

1.12 11. Synthesis: Toward a Unified Model

Every domain examined in this paper instantiates a common abstract model: an agent with finite
resources, operating in an information-rich environment, under layered instruction sets, deploying
an attention mechanism that scores potential inputs for relevance, selects a subset, and retrieves
or amplifies the selected content for further processing. A bacterium: chemoreceptors meeting a
chemical gradient, genome-configured, implementing a biased random walk under metabolic con-
straints. A human brain: cortical networks meeting the sensory world, configured by DNA and
culture, implementing biased competition under metabolic and temporal limits. A transformer:
a layer stack meeting a token sequence, configured by weights and prompt, implementing soft-
max(QKAT/sqrt(d_k))V under compute and memory constraints. The pattern is forced by the
same information-theoretic constraint in every case.

The instruction set hierarchy provides the second unifying dimension. All attentive agents oper-
ate under layered instructions, from hardware through firmware and software to runtime. The
critical structural difference lies in validation: biological instruction sets are selection-tested over
evolutionary timescales, while Al instruction sets are engineered and benchmark-tested. This gap
in validation depth may be the most consequential difference between biological and artificial at-
tention systems — more important than differences in substrate or mechanism.

The universality claim survives its disanalogies because it is scoped correctly. The claim is not
that all attention is the same. It is that all attention instantiates the same computational pattern
— a pattern forced by information-theoretic constraints on finite agents — and that understanding
the pattern illuminates each instance, including the ways each instance departs from it. The dis-
analogies are not qualifications reluctantly conceded. They are integral to the claim: a universality
thesis that cannot specify its own boundaries is not a thesis but a metaphor.

21



1.13 12. Open Questions and Future Directions

Several questions resist resolution and may define the research frontier.

First, what would metacognitive attention in Al require architecturally? Is it sufficient to add a
monitoring module that evaluates attention-layer performance, or does genuine second-order at-
tention demand a fundamentally different architecture — perhaps one with recurrent dynamics that
allow the system to settle into attentional states rather than computing them in a single pass?

Second, can the contemplative training paradigm inform Al attention engineering — not at the level
of specific techniques but at the level of design principles? The contemplative insight that focused
and distributed attention serve different functions, and that meta-attention may matter as much
as first-order attention, may have architectural implications not yet explored.

Third, is self-directed attention possible without consciousness? The biological template is deeply
integrated with subjective experience. If functional architecture cannot be separated from phe-
nomenological architecture, then self-directed Al attention may face limits that no amount of ar-
chitectural refinement can overcome.

Fourth, can attention alignment be verified formally? If a self-directed Al allocates its own atten-
tion, its internal attention states become safety-critical. Formalizing both the attention system and
the welfare criteria it should track would be a challenge at the intersection of alignment research
and the cognitive science of attention — but a necessary one.

1.14 13. Conclusion

Attention is not a feature of minds. It is a consequence of finitude. Any agent existing in an en-
vironment richer than its processing capacity must attend — must score, select, and retrieve from
the stream of available information. This paper has traced that necessity across domains: from the
QKYV mechanics of transformers to the biased competition of visual cortex, from Ashby’s Law to
the contemplative bootstrapping of awareness observing itself, from the instruction sets encoded
in DNA to those encoded in system prompts, from the pathological capture of addiction to the
engineered capture of infinite scroll.

The convergences are real. The disanalogies are equally real: biological attention has temporal
dynamics, neurochemical modulation, embodied grounding, and phenomenal character that no
artificial system replicates. Contemplative attention involves an experiencing subject whose rela-
tionship to the mechanism changes through practice. These differences mark the boundaries of
the universality claim, not its refutation.

The frontier lies at the transition from directed to self-directed attention. Contemplative traditions
demonstrate that this capacity is trainable in humans. Whether it is achievable in artificial systems
depends on whether the attentional wanton can become an attentional person — whether a system
that selects can learn to evaluate its own selecting, and whether that evaluation can be grounded
in something other than first-order pattern completion. The bacterium attends. The transformer
attends. The monk attends to attending. That last recursion — the fold where attention discovers
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itself as its own object — remains the unsolved problem.
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